Photo-Protection in the Centric Diatom Coscinodiscus granii is Not Controlled by Chloroplast High-Light Avoidance Movement

نویسندگان

  • Johannes W. Goessling
  • Paulo Cartaxana
  • Michael Kühl
چکیده

Diatoms are important phototrophs in the worlds’ oceans contributing ∼40% of the global primary photosynthetic production. This is partially explained by their capacity to exploit environments with variable light conditions, but there is limited knowledge on how diatoms cope with changes in the spectral composition and intensity of light. In this study, the influence of light quality and high irradiance on photosynthesis in the centric diatom Coscinodiscus granii was investigated with microscopic imaging and variable chlorophyll fluorescence techniques. Determination of the wavelength-dependent functional absorption cross-section of photosystem (PS) II revealed that absorption of blue light (BL) and red light (RL) was 2.3and 0.8-fold that of white light (WL), respectively. Hence, BL was more efficiently converted into photo-chemical energy. Excessive energy fromBLwas dissipated via non-photochemical quenching (NPQ) mechanisms, while RL apparently induced only negligible NPQ even at high irradiance. A dose dependent increase of cells exhibiting an altered chloroplast distribution was observed after exposure to high levels of BL and WL, but not RL. However, no effective quantum yield of PSII was measured in the majority of cells with an altered chloroplast distribution, and positive Sytox green® death staining confirmed that most of these cells were dead. We conclude that although C. granii can sustain high irradiance it does not perform chloroplast high-light avoidance movements for photo-protection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interference patterns and extinction ratio of the diatom Coscinodiscus granii.

We report experimental and theoretical verification of the nature and position of multiple interference points of visible light transmitted through the valve of the centric diatom species Coscinodiscus granii. Furthermore, by coupling the transmitted light into an optical fiber and moving the diatom valve between constructive and destructive interference points, an extinction ratio of 20 dB is ...

متن کامل

pH effect on the susceptibility to parasitoid infection in the marine diatom Coscinodiscus spp. (Bacillariophyceae)

The pH on the frustule of individual cells of the marine centric diatoms Coscinodiscus granii and Coscinodiscus wailesii (Bacillariophyceae) was measured with pH microsensors in culture media with increasing pH values of 8.04, 8.14, and 8.22, respectively. In 85-96% of the C.granii cells the pH on the frustule was up to 0.4 units higher than that of the medium, reaching a maximum pH 8.95. Only ...

متن کامل

Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor.

Light induced chloroplast movement has been studied as a model system for photoreception and actin microfilament (MF)-based intracellular motilities in plants. Chloroplast photo-accumulation and -avoidance movement is mediated by phytochrome as well as blue light (BL) receptor in the moss Physcomitrella patens. Here we report the discovery of an involvement of a microtubule (MT)-based system in...

متن کامل

External Ca(2+) is essential for chloroplast movement induced by mechanical stimulation but not by light stimulation.

In the fern Adiantum capillus-veneris, chloroplast movement is induced by mechanical stimulation as well as by light stimulation. Directional movement of both types depends on an actin-based motile system. To investigate the physiological relationship between mechanical and light signaling in the regulation of chloroplast movement, we examined the mechano-response of chloroplasts whose motility...

متن کامل

External Ca Is Essential for Chloroplast Movement Induced by Mechanical Stimulation But Not by Light Stimulation

In the fern Adiantum capillus-veneris, chloroplast movement is induced by mechanical stimulation as well as by light stimulation. Directional movement of both types depends on an actin-based motile system. To investigate the physiological relationship between mechanical and light signaling in the regulation of chloroplast movement, we examined the mechanoresponse of chloroplasts whose motility ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016